Dispersive blow-up for solutions of the Zakharov-Kuznetsov equation

نویسندگان

چکیده

Abstract The main purpose here is the study of dispersive blow-up for solutions Zakharov-Kuznetsov equation. Dispersive refers to point singularities due focusing short or long waves. We will construct initial data such that linear problem present this kind singularities. Then we show corresponding nonlinear inherited from component part Similar results are obtained generalized

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Travelling Wave Solutions for a Modified Zakharov–Kuznetsov Equation

The modied Zakharov–Kuznetsov (mZK) equation, ut + uux + uxxx + uxyy = 0, (1) represents an anisotropic two-dimensional generalization of the Korteweg–de Vries equation and can be derived in a magnetized plasma for small amplitude Alfvén waves at a critical angle to the undisturbed magnetic field, and has been studied by many authors because of its importance [1–5]. However, Eq. (1) possesses m...

متن کامل

Blow-up of solutions to a nonlinear dispersive rod equation

In this paper, firstly we find the best constant for a convolution problem on the unit circle via a variational method. Then we apply the best constant on a nonlinear rod equation to give sufficient conditions on the initial data, which guarantee finite time singularity formation for the corresponding solutions. Mathematics Subject Classification(2000): 30C70, 37L05, 35Q58, 58E35

متن کامل

Solitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation

This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...

متن کامل

Well-posedness results for the 3D Zakharov-Kuznetsov equation

We prove the local well-posedness of the three-dimensional Zakharov-Kuznetsov equation ∂tu+∆∂xu+u∂xu = 0 in the Sobolev spaces Hs(R3), s > 1, as well as in the Besov space B 2 (R 3). The proof is based on a sharp maximal function estimate in time-weighted spaces.

متن کامل

Asymptotic Behavior for a Class of Solutions to the Critical Modified Zakharov-kuznetsov Equation

We consider the initial value problem (IVP) associated to the modified Zakharov-Kuznetsov (mZK) equation ut + 6uux + uxxx + uxyy = 0, (x, y) ∈ R, t ∈ R, which is known to have global solution for given data in u(x, y, 0) = u0(x, y) ∈ H(R) satisfying ‖u0‖L2 < √ 3‖φ‖L2 , where φ is a solitary wave solution. In this work, the issue of the asymptotic behavior of the solutions of the modified Zakhar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2021

ISSN: ['0294-1449', '1873-1430']

DOI: https://doi.org/10.1016/j.anihpc.2020.07.002